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A simple model for the generation and amplification of intrinsic axial flow in a linear device,
controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a
novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in
the presence of axial flow shear. This mechanism does not require complex magnetic field
structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at
weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-
amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow devel-
opment is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the
residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the resid-
ual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is
then amplified by this negative viscosity increment. The resulting mean axial flow profile is calcu-
lated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative
viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is
enhanced by the negative increment in turbulent viscosity. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4950830]

I. INTRODUCTION

Toroidal rotation of plasma is beneficial to both macro-
stability, e.g., the mitigation or stabilization of resistive wall
modes,1 and microstability, by suppressing turbulence via to-
roidal shear flows that contribute to E!B shear flows. Plasma
rotation and the underlying toroidal angular momentum trans-
port were intensively first studied because neutral beam injec-
tion (NBI) was the heating method of choice for tokamaks.
Given the fact that unbalanced NBI naturally drives toroidal
rotation, and along with the experimental observation that the
ion momentum and thermal diffusivities were comparable
(v/ " vi),

2 toroidal momentum transport was thought to be
diffusive and comparable to the ion heat transport. However,
the discovery of the non-diffusive character of toroidal mo-
mentum transport in the JFT-2M tokamak3 disrupted that
overly simple understanding of the toroidal rotation. The para-
digm shift was finally triggered by the observation of intrinsic
core rotation in the Alcator-C-Mod tokamak, for both
Ohmically heated and ion cyclotron resonance frequency
driven plasma discharges.4,5 Here, intrinsic rotation means
plasma rotation without NBI drives or external wave momen-
tum torque, i.e., self-accelerated rotation. Given the benefits
of plasma rotations, the intrinsic rotation is particularly favor-
able for the International Thermonuclear Experimental
Reactor (ITER), where NBI driven rotation is not feasible.

The discovery of intrinsic rotation has elicited interest in
the nondiffusive flux (pinch and residual stress) of toroidal
momentum which can accelerate the central plasma rotation.6

The momentum pinch, which redistributes the toroidal mo-
mentum, contributes little to rotation generation.7,8 Hence, the
Reynolds stress has the generic form

h~vr~v/i ffi $v/
@hv/i
@r
þPRes

r/ : (1)

The residual stress is driven by the background turbulence,

i.e., PRes
r/ ¼ PRes

r/ ðrn0;rTi;eÞ, and can accelerate the plasma

from rest via the intrinsic torque s ¼ $@rPRes
r/ . The process

that the profile gradients drive intrinsic rotations via the resid-
ual stress is analogous to a car engine which converts heat flux

into the motion of wheels.9 PRes
r/ is also a counterpart of the

poloidal residual stress that accelerates poloidal flow.10 The
turbulent diffusion of toroidal momentum is also driven by the
ambient background turbulence, i.e., v/ ¼ v/ðrn0;rTi;eÞ.
Thus, as a result of the balance between PRes

r/ and v/, the rota-

tion profile steepens as a secondary effect of the free energy
sources (rn0; rTi;e). If the rotation profile steepens enough
to drive a tertiary instability, i.e., parallel shear flow instability
(PSFI),11,12 then rhvki will act as an additional drive for the

turbulent viscosity, i.e., v/¼v/;1ðrn0;rTi;eÞþvPSFI
/ ðrhvkiÞ.

As a consequence, the intrinsic rotation profile is relaxed by

the additional viscosity driven by rhvki because hv/i0

"PRes
r/ =ðv/;1þvPSFI

/ Þ. This is somewhat analogous to the

zonal flow saturation by tertiary instability (Fig. 1).13

Usually, the toroidal rotation is driven by the parallel re-

sidual stress PRes
rk that emerges from h~vr~vki. PRes

rk is deter-

mined by the spectral correlator hkhkki )
P

kkhkkj/kj
2

which requires symmetry breaking, i.e., spectral imbalance
in k space.14–16 Conventional mechanisms for symmetry
breaking are summarized in Ref. 6. Most of them are tied to
correlating kk and kh via magnetic shear, i.e., kk ¼ khx=Ls,

where Ls ) ŝ=Rq is the magnetic shear length and x is the
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distance between the mode center and the rational surface.
Ultimately, the correlator is determined by the spatial distri-

bution of the intensity, i.e., hkhkki ¼ k2
hhxi=Ls.

Conventional symmetry breaking mechanisms, and thus
models of intrinsic rotation, require finite magnetic shear.
However, residual stress reversal is observed in computer sim-
ulations at weak magnetic shear.17 Moreover, experimental
results suggest that a control knob for intrinsic rotation is the
magnitude of safety factor q0 rather than the magnetic shear.18

Recently, intrinsic parallel flows were observed in a linear de-
vice with uniform magnetic field (zero magnetic shear), the
Controlled Shear Decorrelation Experiment (CSDX) (Fig.
2).19 Some of the correspondence between CSDX and toka-
maks is summarized in Table I, more of which can be found
in Ref. 20. Because neutral gas, as the fuel, is injected radially
from the side wall, there is no external source of axial mo-
mentum, and so the observed axial flow is intrinsic. In addi-
tion, mean axial flow profile steepens during a global
transition triggered for a critical axial magnetic field.20

Meanwhile, the steepening ofrhvzi tracks that ofrn0.21 This
is consistent with that the intrinsic axial momentum transport
is driven by electron drift wave turbulence.

The observed intrinsic axial flows in CSDX raise two
questions: (1) what generates the intrinsic axial flow; (2) what
determines the mean axial flow profile? Intrinsic toroidal flows
are driven by the residual axial stress PRes

rz , which requires
spectral symmetry breaking. However, conventional symmetry

breaking mechanisms do not apply to CSDX due to the uni-
form magnetic field there, i.e., zero magnetic shear. Motivated
by these observations, in this paper, we propose a new dynam-
ical symmetry breaking mechanism which does not require a
specific magnetic field structure. In this model, we consider a
drift wave system with weakly nonadiabatic electrons (~ne=n0

¼ ð1$ idÞ~/ with 0 < d* 1) in the presence of finite axial
flow shear. By dynamical symmetry breaking, we mean that a
small but finite perturbation to the mean axial flow profile can
break the symmetry, and the resulting turbulence spectral
imbalance sets a finite residual stress. The residual stress
driven intrinsic flow then adds to the initial flow profile pertur-
bation. Therefore, the flow profile perturbation is self-
amplified via a closed feedback loop, as in a modulational
instability. The residual stress gives rise to a momentum flux
with a negative diffusivity, PRes

rz " jvRes
/ jhvzi0, inducing a neg-

ative increment ($jvRes
/ j) to the ambient turbulent viscosity

(v/). Hence, the dynamical symmetry breaking is essentially a
negative viscosity phenomenon. The growth of axial flow
shear by the dynamical symmetry breaking is analogous to the
modulational growth of zonal flow shear.13

The mean axial flow can be driven by an axial ion pres-
sure drop and is enhanced by the negative viscosity. As shown
in Fig. 2, the helicon source on the left end of the cylinder
makes the nearby plasma hotter than the plasma near the
endplate, thus giving rise to an axial ion pressure drop,
DPi ¼ PijSource $ PijEndplate. Hence, in analogy to the turbulent
hydrodynamic pipe flows, the axial plasma flow in a linear de-
vice is driven by DPi and dissipated by the total viscosity, con-
sisting of both the ambient turbulent viscosity and the negative
viscosity increment induced by the residual stress, i.e.,
hvzi0 " DPi=ðv/ $ jvRes

/ jÞ. Therefore, with external excitation
(e.g., DPi), a total negative viscosity is not needed to generate
axial flows, and hvzi0 is enhanced by $jvRes

/ j. In addition,
boundary conditions must be considered to determine the
mean flow profile.22 In CSDX, the boundary layer is domi-
nated by neutral flows (Fig. 2). The outer region of the cylin-
drical plasma is only partially ionized, and the neutral
momentum is coupled to the plasma momentum via the ioniza-
tion and recombination processes within the boundary layer.
Thus, the neutral dynamics in the boundary layer plays a role
in the boundary conditions for the plasma flow in the center.

Driven by electron drift wave turbulence with no require-
ment for magnetic field geometry, the dynamical symmetry

FIG. 1. Primary, secondary, and terti-
ary effects of free energy sources on
(a) intrinsic rotation and (b) zonal
flow.

FIG. 2. (a) Sketch of axial plasma flow in CSDX in analogy to (b) turbulent
pipe flow.
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breaking is applicable to intrinsic rotation in flat q regions23,24

where conventional models fail, as well as to intrinsic rotation
in plasmas where the electron channel (and thus CTEM) is
dominant. Also, a total negative viscosity, as well as the
underlying modulational growth of test flow shear, is not
needed to generate intrinsic rotation at normal magnetic
shears, because the residual stress determined by conventional
symmetry breaking mechanisms can accelerate the plasma.
Therefore, the profile gradient of intrinsic toroidal rotation is
enhanced by the negative viscosity induced by the dynamical
symmetry breaking, i.e., hvki0 " PRes

rk =ðv/ $ jvRes
/ jÞ.

To summarize, the new dynamical symmetry breaking
mechanism discussed here is outside the domain of conven-
tional models of residual stress. The contrast and comparison
are summarized in Table II. The dynamical symmetry break-
ing is different in two ways: (1) Intrinsic flow is generated
by the self-amplification of a test or seed flow shear. This
process is driven fundamentally by rn0, i.e., as in a modula-
tional instability of drift waves, similar to the modulational
growth of zonal flow shear. (2) Instead of an intrinsic torque
that accelerates the flow, the dynamical symmetry breaking
mechanism yields a residual stress which induces a negative
increment to the ambient turbulent viscosity that enhances
the mean flow profile gradient.

The rest of this paper is organized as follows: Sec. II
introduces the derivation of the drift wave system coupled to
axial flow fluctuations in the weakly nonadiabatic limit; Sec.
III discusses the dynamical symmetry breaking mechanism;
Sec. IV elaborates the negative viscosity induced by the resid-
ual stress; the total axial flow structure is calculated and

discussed in Sec. V; Sec. VI gives the implications for toka-
maks of dynamical symmetry breaking; Sec. VII summarizes
and discusses the results.

II. PHYSICS MODEL

We consider a system consisting of electron density,
electron axial momentum, charge balance, and plasma axial
flow in cylindrical geometry where magnetic field is uniform
in the axial direction

D~ne

Dt
þ vE +rn0 þ n0

@~ve

@z
¼ 0; (2)

men0
D

Dt
~ve ¼ en0

@~/
@z
$ @

~pe

@z
$ !eimen0~ve; (3)

r? + j? ¼ $
@jz

@z
; (4)

D

Dt
~vz þ vE +rhvzi ¼ $

@~pe

@z
: (5)

Here, D=Dt ) @t þ vE +r is the convective time derivative
and vE ¼ ẑ !r~/ is the E!B drift velocity. In the following
analysis, it is convenient to normalize the quantities as fol-
lows: ~n ) ~ne=n0, ~/ ) e~/=Te, length ) length=qs, t ) t=xci,
~vz ) ~vz=cs, where cs )

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion acoustic speed,

xci ) eB=mi is the ion cyclotron frequency, and qs ) cs=xci.
The perpendicular current is set by the polarization current
j? ¼ $n0

D
Dtr?~/, while the axial current is jz ¼ n0ð~vz $ ~veÞ.

Thus, the electron flow is cancelled by subtracting Eq. (4)
from Eq. (2)

D

Dt
~n $r2

?
~/

" #
þ 1

Ln

1

r

@~/
@h
þ @

~vz

@z
¼ 0; (6)

where Ln ) $ðd ln n0=drÞ$1 is the density profile gradient
length. Ion pressure fluctuation is neglected in the flow equa-
tion, since ~pi * ~pe. In the presence of a finite mean axial
flow shear hvzi0, the axial flow momentum equation becomes

TABLE I. Correspondence between the linear device, CSDX, and tokamaks.

Tokamaks CSDX

Most have sheared magnetic field Uniform axial magnetic field (shear-free)

Intrinsic toroidal rotation Intrinsic axial flow

Rotation boundary
condition set by SOL

Axial flow boundary condition
set by boundary neutral layer

TABLE II. Compare and contrast the dynamical symmetry breaking with conventional symmetry breaking mechanisms.

Standard symmetry breaking Dynamical symmetry breaking

Free energy rTi;rn0; ::: rn0

Symmetry breaker E0r; IðxÞ
0; ::: All tied to magnetic field configuration Test axial flow shear, dhvzi0; No requirement for shear of B structure

Effect on flow Instruction, @r
QRes

rk Negative viscosity, $jvResj driven by rn0

Flow profile hvki0 ¼
QRes

rk
v/

hvZi0 ¼
Flow drive e:g:

QRes
rz ;DPi

" #

v/ rN0;rhvzið Þ $ jvRes
/ j

Feedback loop
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D

Dt
~vz $ hvzi0

1

r

@~/
@h
¼ $ @

~n

@z
; (7)

where the thermal fluctuations of electrons are ignored, such
that ~pe ¼ Te ~n. To close the system, the electron density fluc-
tuation needs to be evaluated. The electron response is nearly
adiabatic, i.e., ~n ¼ ð1$ idÞ~/ with d* 1, given by Eqs. (2)
and (3). The electron axial momentum is damped by electro-
n–ion collisions. With the electrons in the thermal equilib-
rium state !ei , x, the inertia term in Eq. (3) can be
neglected. As a consequence, the electron current is driven
by the nonadiabatic electrons

~ve ¼ $
v2

The

!ei

@

@z
~n $ ~/
$ %

: (8)

In the weakly nonadiabatic limit, 1<k2
z v

2
The=ð!eixkÞ<1.

Plugging the electron current into the electron density equa-
tion, the nonadiabatic electron response is then given by

d ffi
!ei x- $ xkð Þ

k2
z v

2
The

; (9)

where x- ) khqscs=Ln is the electron drift frequency. In the
weakly nonadiabatic limit, 0 < d* 1. For adiabatic elec-
trons, k2

z v
2
The=ð!eixkÞ!1, then d! 0 and ~n ! ~/. Finally,

we arrive at the drift wave system with weakly nonadiabatic
electrons coupled to the axial flow fluctuations

D

Dt
1$ id$r2

?
$ %

~/ þ 1

Ln

1

r

@~/
@h
þ @

~vz

@z
¼ 0; (10)

D

Dt
~vz $ hvzi0

1

r

@~/
@h
¼ $ 1$ idð Þ @

~/
@z

; (11)

with d given by Eq. (9). This system gives two instabilities:
electron drift wave instability and parallel shear flow insta-
bility (PSFI). The electron drift wave is unstable in the pres-
ence of nonadiabatic electrons and is driven by rn0. Next,
we will briefly discuss the PSFI in the presence of nearly adi-
abatic electrons.

PSFI is driven by rhvzi and is essentially a negative
compressibility phenomenon. The dispersion relation for the
coupled system (Eqs. (10) and (11)) is

1þ k2
?q

2
s $ id$ x-

x
þ khkzqscshvzi0

x2
$ 1$ idð Þ k

2
z c2

s

x2
¼ 0;

(12)

where 0 < d* 1 in the weakly nonadiabatic limit. As a
quadratic equation of x, Eq. (12) gives unstable solution
when the mean flow shear hvzi0 exceeds a critical value

hvzi0crit ¼
1

khkzqscs

x2
- 1þ k2

?q
2
s

$ %

4 1þ k2
?q2

s

$ %2 þ d2
h iþ k2

z c2
s

2

4

3

5; (13)

such that the discriminant is negative. If the drift wave
branch is neglected, the dispersion relation (Eq. (12)) sup-
ports a modified ion acoustic wave

x2 " ceffk2
z c2

s ; (14)

with the effective compressibility of the axial flow as

ceff ¼ 1

1þ k2
?q2

s

1$ khhvzi0

kzxci

& '
: (15)

When the axial flow shear is large enough such that the com-
pressibility becomes negative, the modified ion acoustic
wave is driven unstable. Therefore, the PSFI is driven by
negative compressibility.

With the coupled drift wave system in the weakly nona-
diabatic limit, next, we will show how this system breaks the
spectral symmetry of the drift wave turbulence.

III. DYNAMICAL SYMMETRY BREAKING

Consider the axial flows in a linear cylindrical plasma.
The dynamics of the mean axial flow is governed by

@hvzi
@t
þ @h

~vr~vzi
@r

¼ $ 1

q0

@Pi

@z
$ !ni hvzi$ hvz;ni

$ %
: (16)

The mean ion pressure drops in the axial direction due to the
axially inhomogeneous ion temperature (Fig. 2) and thus can
drive a mean flow hvzi, even though its fluctuation was
neglected in the fluctuation equation of axial flow. While
DPi drives the axial flow in the center region, the boundary
layer is controlled by the collisional coupling between
plasma flows (hvzi) and neutral flows (hvz;ni). The generic
form of the Reynolds stress is given by

h~vr~vzi ¼ $v/
@hvzi
@r
þPRes

rz : (17)

The momentum pinch is ignored because (1) there is no to-
roidal effect in the linear device, where the magnetic fields
lines are straight and uniform, and (2) the pinch effect is re-
sponsible for redistribution of the axial momentum but not
for generation.

To calculate the Reynolds stress h~vr~vzi, linearize Eq.
(11) to get the linear response for the axial velocity fluctua-
tion ~vz, and ~vr is the fluctuation of the radial E!B velocity.
The quasilinear Reynolds stress is then determined by the
cross phase between ~vr and ~vz

h~vr~vzi ¼ $
X

k

jckj
x2

k

k2
hq

2
s j/kj

2hvzi0

þ
X

k

jckj
x2

k

þ d
xk

 !
khkzqscsj/kj

2; (18)

where ck and xk arise from the drift wave system. The resid-
ual stress (the second term in Eq. (18)) is determined by the
correlator, i.e., PRes

rz " hkhkzi )
P

kkhkzj/kj
2, which requires

spectral imbalance, due to correlated ~vr and ~vz fluctuations.
The coupled system described by Eqs. (10) and (11) is

controlled by drift wave modes when hvzi0 is below the PSFI
threshold. This drift wave dominated system is unstable due
to nonadiabatic electrons (which set the cross phase between
electron density perturbation and electrostatic potential per-
turbation). Specifically, the linear growth rate is set by the
weakly nonadiabatic electron density perturbation as
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ck ffi x-d=ð1þ k2
?q

2
s Þ

2; (19)

given by the dispersion relation (Eq. (12)) with the ion-
acoustic branch neglected. With d given by Eq. (9), the linear
growth rate of the collisional drift wave is then set by the fre-
quency shift from the electron drift frequency

ck ffi
!ei

k2
z v

2
The

x- x- $ xkð Þ
1þ k2

?q2
s

$ %2
: (20)

The frequency of the system is controlled by the electron drift
frequency with a shift set by the mean axial flow shear

xk ffi
x-

1þ k2
?q2

s

$ khkzqscshvzi0

x-
: (21)

Consequently, the full expression for the growth rate is

ck ffi
!ei

k2
z v

2
The

x2
-

1þ k2
?q2

s

$ %2

k2
?q

2
s

1þ k2
?q2

s

þ khkzqscshvzi0

x2
-

 !

: (22)

With rn0 as the free energy source, a finite mean axial
flow shear can break the symmetry of the background drift
wave turbulence. For a flat mean axial flow profile, i.e.,
hvzi0 ¼ 0, the growth rate given by Eq. (22) is symmetric for
kz ! $kz. The resulting turbulence spectrum is consequently
expected to be symmetric in k space, giving PRes

rz
" hkhkzi ¼ 0. The momentum diffusion is also zero for the
flat mean flow profile. Therefore, the mean axial flow profile is
stationary and stays flat. However, a small but finite perturba-
tion to the mean flow profile, e.g., dhvzi0 > 0, breaks the sym-
metry of the background turbulence. With larger linear growth
rates, modes with khkz > 0, whose frequencies shift further
away from x-, grow faster than the other modes. The drift
wave turbulence intensity is then unbalanced in khkz space
(Fig. 3). Hence, kh and kz are correlated by the spectral imbal-
ance, and so form a finite residual stress, since PRes

rz
" hkhkzi > 0. This residual stress amplifies the initial test flow
shear, closing the feedback loop for the self-amplification of
test flow shear (Table II).

Given the drift wave instability in the background and
the spectral imbalance resulting from the symmetry break-
ing, the Reynolds stress can be calculated. The first term in
the Reynolds stress Eq. (18) is a diffusive axial momentum
flux, with the turbulent viscosity

v/ ffi
X

k

!ei

k2
z v

2
The

k2
?q

2
s

1þ k2
?q2

s

k2
hq

2
s j/kj

2: (23)

This turbulent viscosity is driven by the ambient background
turbulence. So, for the drift wave turbulence dominated
case, v/ is driven primarily by rn0. Additionally, as will be

discussed later, the PSFI will enter when hvzi0 > hvzi0crit.
Then, the turbulent viscosity is driven by both density gradi-

ent and the mean flow gradient, i.e., v/ ¼ vDW
/ ðrn0Þ

þvPSFI
/ ðrhvziÞHðhvzi0 $ hvzi0critÞ, where HðxÞ is a Heaviside

step function, acting as a switch for the onset of PSFI driven
turbulence.

The off-diagonal flux in Eq. (18) is the residual stress

PRes
rz ffi

X

k

!ei

k2
z v

2
The

2þ k2
?q

2
s

$ %

! k2
?q

2
s

1þ k2
?q2

s|fflfflfflfflffl{zfflfflfflfflffl}
‹

þ khkzqscshvzi0

x2
-|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

›

2

664

3

775
khkzqscsj/kj

2: (24)

PRes
rz is dominated by term ‹ when hvzi0 is below the PSFI

threshold. Hence, in the presence of a finite test axial flow
shear, the spectral imbalance in Fig. 3 gives rise to the resid-
ual stress

PRes
rz ¼ sgn dhvzi0

$ %X

fkþg

!ei

k2
z v

2
The

2þ k2
?q

2
s

$ %

! k2
?q

2
s

1þ k2
?q2

s

jkhkzjqscsDIk dhvzi0
$ %

; (25)

where DIkðdhvzi0Þ ¼ j/kj
2jfkþg $ j/kj

2jfk$g accounts for the
spectral imbalance. On account of the symmetry breaking
term in the growth rate Eq. (22), the residual stress has the
same sign as dhvzi0. Moreover, PRes

rz depends explicitly on
the mean axial flow shear via term › in Eq. (24) as well as
via the spectral imbalance. Term › "

P
kk2

h=x
2
-j/kj

2dhvzi0 ¼
L2

n

P
kj/kj

2dhvzi0 does not require symmetry breaking and
enters in the form of a negative diffusion. Therefore, a nega-
tive viscosity increment is induced by the residual stress.

It should be noted that the dependence of residual stress
upon dhvzi0 cannot be absorbed by the diffusive component
of the Reynolds stress for 3 reasons: (1) the magnitude of re-
sidual stress is dominated by term ‹ of Eq. (24) which is in-
dependent of dhvzi0; (2) the spectral imbalance is induced via

FIG. 3. Spectral imbalance in khkz

space.
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both linear growth and nonlinear saturation of modes, so
DIkðdhvzi0Þ and thus PRes

rz are essentially nonlinear in dhvzi0;
(3) even the term linear in dhvzi0 results in a negative diffu-
sive flux rather than a positive, downgradient diffusion. The
induced negative viscosity can give rise to the modulational
growth of the test flow shear, as will be shown in Section IV.

IV. NEGATIVE VISCOSITY

The dynamical symmetry breaking mechanism is essen-
tially the self-amplification of test flow shear, driven by drift
wave turbulence, which is similar to the modulational growth
of zonal flow shear. In this section, the growth and saturation
of the test flow shear are considered. The modulational growth
of the test flow shear is illustrated by the cartoon in Fig. 4.
The dynamics of the test flow shear is a diffusion process with
the turbulent viscosity as the effective diffusivity. We will
show that the residual stress induces a negative increment to
the ambient turbulent viscosity. Thus, the total viscosity is
vtot

/ ¼ v/ $ jvRes
/ j. When jvRes

/ j is strong enough such that the
total viscosity becomes negative, the test flow shear will grow
until the flow shear hits the PSFI threshold given by Eq. (13).
Then, the additional turbulent viscosity induced by PSFI tur-
bulence makes the total viscosity positive and stops the
growth of the test flow shear hvzi0crit, thus sets an effective
upper limit for the profile gradient of axial flow.

The dynamics of the test flow shear can be derived from
Eq. (16)

@dhvzi0

@t
þ @2

@r2
$v/dhvzi0 þ dPRes

rz

" #
¼ 0: (26)

Without the perturbed residual stress, the dynamics of the
test flow shear is a diffusion process with the flow shear flux
Cdhvzi0 ¼ $v/@rdhvzi0. Next, we will show that the residual
stress due to the perturbed axial flow shear induces a mo-
mentum flux with a negative diffusivity. The test flow shear
flux is then modified by the negative increment of momen-
tum diffusivity.

To do this, we begin by calculating the perturbed residual
stress. Given by Eq. (18), the residual stress explicitly depends
on the flow shear through the growth rate and the frequency.
Moreover, the turbulence intensity depends on the flow
shear because of the spectral imbalance induced by hvzi0.
Therefore, it is convenient to write the turbulence intensity in
terms of the wave action density, which is, by definition,
Nk ) ek=xk. Here, the wave energy of the electron drift wave
is ek ¼ 1

2 ð1þ k2
?q

2
s Þ

2j/kj
2.25 Consequently, the perturbed

residual stress due to the test flow shear can be written as
dPRes

rz ¼ dPRes
rz ðdck; dxk; dNkÞ: The perturbed growth rate

and perturbed frequency are calculated directly from Eqs. (21)
and (22), while the perturbed wave action density due to the
axial flow profile perturbation is calculated as follows.

The wave action density Nk ) ek=xk is essentially the
population of waves with wave number k. Its dynamics is
governed by the wave kinetic equation

@Nk

@t
þ vgr

@Nk

@r
$ @

@r
xk þ k + Vð Þ @Nk

@kr
¼ ckNk $ Dxk

N2
k

N0
:

(27)

We separate the perturbation, due to test flow shear, from the
slowly varying mean wave action density, i.e., Nk ¼ dNk

þhNki. The linearized equation for dNk is then

@dNk

@t
þ dvgr

@hNki
@r
$ @

@r
d xk þ k + Vð Þ @hNki

@kr

¼ ckdNk þ dckhNki$ 2DxkdNk: (28)

The convection by the wave packet motion vanishes because

dvgr

dhvzi0
¼ d @xk=@krð Þ

dhvzi0
¼ 0;

where only the linear frequency shift is considered. Ignoring
the zonal flow effects, since there is no coupling between kh

and kz by geometry, the refraction term becomes

@

@r
d xk þ k + Vð Þ @Nk

@kr
¼ @dxk

@r
þ kzdhvzi0

& '
@hNki
@kr

: (29)

The shearing of the frequency perturbation is calculated
from Eq. (21)

@dxk

@r
¼ kzdhvzi0

L2
n

n0

@2n0

@r2
$ 1

& '
: (30)

Thus, the perturbation to the refraction term is driven by the
density profile curvature

d
@

@r
xk þ k + Vð Þ @Nk

@kr

) *
¼ kzdhvzi0

L2
n

n0

@2n0

@r2

@hNki
@kr

: (31)

Here, we consider the drift wave turbulence with finite rn0,
so the effect of @n0=@r is dominant over that of @2n0=@r2,
and thus, the above curvature driven term (Eq. (31)) can be
neglected. Therefore, dNk is driven by the linear growth and
nonlinear self-interaction of drift waves

FIG. 4. Modulational growth of the
test flow shear. (a) Perturbation to the
axial flow profile is self-amplified by
the modulational instability driven by
residual stress induced negative viscos-
ity $jvRes

/ ðrn0Þj. (b) The test flow
shear is amplified into a macroscopic
profile. (c) When the axial flow shear
hits the PSFI threshold, the additional
vPSFI

/ ðrhvziÞ relaxes the flow profile,
keeping hvzi0 at or below hvzi0crit.
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@dNk

@t
¼ ckdNk þ dckhNki$ 2DxkdNk: (32)

The steady state perturbation is then given by

dNk ¼
dck

2Dxk $ ck
hNki; (33)

where the decorrelation rate Dxk ffi ck is determined by the
steady state equilibrium, hNki. Finally, with the perturbed
growth rate calculated from Eq. (22), the perturbed wave
action density due to the test flow shear is

dNk ¼
1þ k2

?q
2
s

k2
?q2

s

khkzqscsdhvzi0

x2
-

hNki: (34)

Thus, the perturbed residual stress due to the test flow
shear takes the form of a negative diffusive flux of axial
momentum

dPRes
rz ) $vRes

/ dhvzi0; (35)

with the negative viscosity

vRes
/ ¼ $ !eiL2

n

v2
The

X

k

1þ k2
?q

2
s

$ %
4þ k2

?q
2
s

$ %
j/kj

2; (36)

related to PRes
rz by dynamical symmetry breaking. Therefore,

the test flow shear dynamics is a diffusion process

@dhvzi0

@t
$ @2

@r2
vtot

/ dhvzi0 ¼ 0; (37)

where the total viscosity

vtot
/ ¼ v/ $ jvRes

/ j; (38)

consists of both the ambient turbulent viscosity and the nega-
tive viscosity induced by the residual stress. Thus, an axial
flow shear modulation is either damped or growing without
oscillation, with growth rate given by

cq ¼ $q2
r v

tot
/ ; (39)

where qr is the radial wave number of the modulation. When
the negative viscosity is large enough that the total viscosity
becomes negative, the axial flow shear modulation is unsta-
ble, which means a small perturbation to the mean flow pro-
file can be amplified. This is analogous to the modulational
growth of zonal flow shears.13

However, the test flow shear cannot grow forever. The
mean axial flow profile gradient is limited by the PSFI
threshold Eq. (13). When the flow shear hits hvzi0crit, an addi-
tional turbulent viscosity vPSFI

/ driven by rhvzi is induced.
Moreover, being nonlinear in the flow shear, vPSFI

/ is large
enough to make the total viscosity positive, since

vtot
/ ¼ vDW

/ þ vPSFI
/ Hðhvzi0 $ hvzi0critÞ $ jv

Res
/ j; (40)

so that the modulational growth of the test flow shear stops.
In this way, the PSFI threshold given by Eq. (13) sets an

upper limit for the mean flow shear driven by the modula-
tional growth, and the total viscosity is kept positive.

To summarize, a test, or seed, sheared axial flow is ampli-
fied by the negative viscosity induced by the residual stress.
In particular, when the induced negative viscosity is larger
than the ambient turbulent viscosity such that the total viscos-
ity becomes negative, the test shear is then amplified to form
a macroscopic profile by the modulational instability. The
axial flow profile gradient is limited by the PSFI threshold.
Also, the total viscosity stays positive due to the PSFI induced
turbulent viscosity. Moreover, the total viscosity given by Eq.
(40) is driven by both rn0 (which drives vDW

/ and $jvRes
/ j)

and rhvzi (which drives vPSFI
/ when PSFI switches on). This

makes vtot
/ different from familiar eddy viscosities. In particu-

lar, vtot
/ can give rise to the self-amplification of a test flow

shear and also limit this modulational growth.

V. MEAN FLOW STRUCTURE

The turbulent plasma flow in a cylindrical chamber is sim-
ilar to a turbulent pipe flow (Fig. 2), with a point-by-point
comparison listed in Table III. The turbulent hydrodynamic
pipe flow is driven by axial pressure drop due to pumping
power, and dissipated by the turbulent viscosity driven by the
background hydrodynamic turbulence. By balancing the local
momentum input (DP) and momentum diffusion (h~vr~vzi
" $!Thvzi0), the flow gradient is obtained as hvzi0 " $DP=!T .
The flow vanishes at the boundary due to the frictional force
by the wall, which sets the boundary condition as no-slip. In a
linear plasma device like CSDX, axial plasma flow can always
be driven by the axial pressure drop DPi. Therefore, the axial
flow does not need a negative viscosity for generation.
However, by the dynamical symmetry breaking, the axial flow
gradient can be enhanced by the negative viscosity increment
induced by the residual stress. Hence, an intrinsic axial flow is
generated, enhancing the axial flow driven by DPi. Also, for
plasma flow, the total viscosity depends on both rn0 and
rhvzi.

The boundary condition of the plasma flow is controlled
by the neutral layer at the edge where the gas is partially ion-
ized, which thus heavily involves the neutral flow dynamics.
Meanwhile, the neutral momentum is coupled to the plasma
momentum through ionization and recombination processes,
so the boundary condition for the plasma flow is ultimately
set by the neutral flows in the boundary layer. In this section,
boundary conditions and their effects on the flow profile are
discussed.

The axial flow profile is given by the ion momentum
balance for the turbulent plasma axial flow, as shown in Fig.
2. The ion pressure drop in the axial direction due to heating
at the source end is balanced by the momentum out flux
through the side wall, as determined by the Reynolds stress

pR2DPi ¼ q0h~vz~vri2pRL:

Here, R and L are the radius and the length of the cylindrical
plasma tube, respectively, and q0 is the mean plasma density.
The Reynolds stress consists of both the diffusive axial mo-
mentum flux driven by the ambient turbulent viscosity and
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the residual component that induces a negative viscosity in-
crement by the dynamical symmetry breaking

h~vz~vri ffi $½vDW
/ þ vPSFI

/ Hðhvzi0 $ hvzi0critÞ $ jv
Res
/ j/hvzi0:

As a consequence, the mean axial flow profile is

hvzi0 ffi $
RDPi

2q0L vDW
/ þ vPSFI

/ H hvzi0 $ hvzi0crit

$ %
$ jvRes

/ j
h i :

(41)

The total viscosity that balances the pressure drop sets an
upper limit for the flow shear through its dependence upon
the mean flow profile, via the PSFI effect. When the axial
flow profile steepens such that the axial flow shear exceeds
hvzi0crit (given by Eq. (13)) and the PSFI switches on, the
resulting turbulent viscosity vPSFI

/ adds to the existing viscos-
ity as a positive increment. The enhanced dissipation level
then relaxes the flow profile, so that the mean axial flow pro-
file gradient stays below or at the PSFI threshold.

Boundary conditions are important to determine the
axial flow profile. By integrating Eq. (16), the net axial flow
evolution is

@

@t

ðR

0

drhvzi ¼
ðR

0

dr
DPi

q0L
$ h~vr~vzijR: (42)

The momentum flux at the center r¼ 0 is neglected because
both components of the Reynolds stress are driven by the
profile gradients, which vanish at the center. Momentum
transfer between ions and neutrals cancels and makes no
contribution to the net flow. Eq. (42) shows the radial flux of
axial momentum at the boundary is a sink of the net axial
flow, and the axial pressure drop in the center region is a
source. If there is no momentum source/sink, the flow profile
should be reversed because the net momentum is conserved
(Fig. 5). However, it is not clear if flow reversal occurs in
CSDX,19 and the net axial flow is always positive.20 This is

due to the small momentum flux (because of the no-slip wall
condition) at the boundary and the existence of axial ion
pressure drop. Axial flow is small at the boundary due to the
frictional force by the wall, so ~vzjR ffi 0 and thus
h~vr~vzijR ffi 0. As a consequence, DPi driven axial flow in the
central region (outer region is dominated by neutral flows)
raises the net flow magnitude. To calculate the axial flow
profile, integrate Eq. (41) to get

hvz rð Þi ¼ hvz Rð Þiþ
ðR

r
dr

RDPi

2q0Lvtot
/
: (43)

The plasma momentum is coupled to the neutral momentum
within the boundary layer. There is no momentum loss dur-
ing ionization and recombination processes, since the plasma
source mostly heats electrons. Therefore, within the bound-
ary layer near the wall (rb < r < R)

hvzi ffi hvn;zi: (44)

For the neutral flows within the boundary layer, the outer
boundary is set by the frictional wall condition, as in a no-
slip boundary condition. Assuming the width of the bound-
ary layer is small compare to Ln, the plasma flow is approxi-
mately no-slip at the boundary, i.e.

hvzðRÞi ffi 0: (45)

With the no-slip boundary condition, the axial flow profile is

hvz rð Þi ¼
ðR

r
dr

RDPi

2q0Lvtot
/
; (46)

which gives rise to a positive net flow driven by the ion pres-
sure drop in axial direction. However, if the boundary condi-
tion is not strictly no-slip—i.e., with positive momentum out-
flux at the boundary (e.g., momentum loss due to ion-neutral
coupling within the boundary layer)—then the flow profile
can reverse near the wall region. Therefore, to obtain a

TABLE III. Comparison and contrast between hydrodynamic pipe flow and plasma flow in a cylinder.

Pipe flow Plasma flow

Drive Pressure drop DP Ion pressure drop DPi

Boundary condition No slip wall Set by neutral flows within boundary layer, located near the wall

Viscosity !T vDW
/ ðrn0Þ þ vPSFI

/ ðrhvziÞHðhvzi0 $ hvzi0critÞ $ jvRes
/ ðrn0Þj

FIG. 5. Mean flow profile for different
boundary conditions. (a) No external
source/sink. (b) No slip at wall, i.e.,
momentum flux is zero at the bound-
ary; axial flow is driven by ion pres-
sure drop in the axial direction. (c)
With some momentum flux at the wall
while axial ion pressure drop domi-
nated, flow profile is reversed with
positive net flow.
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physical boundary condition for the plasma flow, the details
of the coupled ion and neutral dynamics need to be considered
within the boundary layer. This is left to future work.

VI. IMPLICATION FOR TOKAMAKS

The dynamical symmetry breaking mechanism does not
require a particular magnetic field structure, so it may help
understand intrinsic rotations with flat q profile or weak mag-
netic shear. Recent computational studies discover an intrinsic
torque reversal at weak magnetic shear.17 Moreover, experi-
mental results suggest that the control knob for intrinsic rota-
tion is the magnitude of q0, rather than magnetic shear.18 Both
of them can be addressed using the dynamical symmetry
breaking scheme which is independent from magnetic shear.

We propose a synergy of the conventional residual stress
(linked to magnetic shear) and the residual stress induced neg-
ative viscosity by dynamical symmetry breaking. For toka-
maks with normal magnetic shears, the total viscosity does
not need to become negative to generate intrinsic flow,
because the intrinsic rotation can be generated by residual
stress determined by conventional models. However, the flow
dissipation consists of both the ambient turbulent viscosity
and the negative viscosity induced by the dynamical symme-
try breaking. Then, the mean rotation profile is given by

dhvki
dr
¼

PRes
rk

vTurb
/ $ jvRes

/ j
: (47)

Thus, the negative viscosity increment enhances the rotation
profile independent of the magnetic field structure. Also, the
rotation profile gradient is limited by the PSFI threshold.
When hvki0 hits the PSFI threshold, the additional turbulent
viscosity driven by PSFI can raise the total viscosity and
thus relaxes the rotation profile, since

dhvki
dr
¼

PRes
rk

vTurb
/ þ vPSFI

/ H hvki0 $ hvki0PSFI

" #
$ jvRes

/ j
: (48)

As a result, the rotation profile gradient can be expected to
stay at or below the PSFI threshold. Therefore, the dynami-
cal symmetry breaking mechanism is applicable to the intrin-
sic rotation at weak magnetic shear. In addition, as the
dynamical symmetry breaking uses a simple model of elec-
tron drift wave turbulence, this mechanism can be used to
understand the intrinsic rotation in burning plasmas where
the turbulence is the CTEM turbulence,26,27 and to address
the effect of electron cyclotron resonance heating (ECRH)
on toroidal rotation.28,29

VII. CONCLUSION AND DISCUSSION

In this paper, we propose a new dynamical symmetry
breaking mechanism for the generation of intrinsic axial
flows in linear devices with uniform magnetic field.
Specifically, in a simple drift wave system in the presence of
finite axial flow shears, a test, or seed, flow shear can be self-
amplifying. The linear growth rate of the drift wave instabil-
ity is set by the frequency shift from the electron drift

frequency. A test axial flow shear breaks the symmetry by
shifting the frequencies of some classes of modes further
away from x- than others. As a consequence, the unbalanced
turbulence spectrum couples kh and kz, giving rise to a finite
residual stress PRes

rz " hkhkzi. This residual stress amplifies
the initial test flow shear by inducing a negative increment to
the ambient turbulent viscosity. Thus, this mechanism is
essentially one of the negative viscosity. When the negative
viscosity induced by residual stress is large enough such that
the total viscosity becomes negative, the flow shear modula-
tion is unstable and is amplified by modulational instability.
When the axial flow shear exceeds hvzi0crit and triggers PSFI,
the additional turbulent viscosity by PSFI nonlinearly satu-
rates the hvzi0 growth. The flow profile will then be relaxed
by vPSFI

/ . Hence, the axial flow shear will stay at or below
hvzi0crit. Also, the total viscosity given by this model is driven
by not only rn0 but also rhvzi due to the PSFI contribution,
distinguishing from the standard models of eddy viscosity.

The growth of the test flow shear is analogous to the
modulational growth of zonal flow shear. Additionally, the
nonlinear saturation by PSFI—a tertiary instability—is simi-
lar to the zonal flow saturation by tertiary instability.
However, despite these similarities, parallel flow cannot triv-
ially couple to zonal flow via geometry in the linear device,
due to the absence of magnetic shear. The simple coupled
drift wave system studied here can convert parallel compres-
sion rk~vk into zonal flow,25 indicating coupling between
parallel flow and zonal flow by drift wave turbulence. Thus,
zonal flow may play a role in the intrinsic axial flow and the
intrinsic toroidal rotation via the parallel flow-zonal flow
coupling. This is left to future work.

The self-amplification of test flow shear is energy con-
serving. Though there is a pressure drop in the axial direc-
tion, its direct effect is weak and is amplified by dynamical
symmetry breaking. Thus, the axial flow is mainly driven by
the background drift wave turbulence. The process of energy
transferring between fluctuation and mean axial flow can be
illustrated by multiplying the flow fluctuation, mean flow,
density fluctuation, mean density, and vorticity equations by
~vz; hvzi; ~ne; hni; /, respectively, and integrating them over
the space

@

@t

ð
~v2

z

2
dV ¼ $

ð
h~vr~vzi

@hvzi
@r

dV $
ð

~vz
@~pe

@z
dV; (49)

@

@t

ð hvzi2

2
dV ¼

ð
h~vr~vzi

@hvzi
@r

dV; (50)

@

@t

ð
~n2

e

2
dV ¼ $

ð
h~ne~vri

@hni
@r

dV $
ð

~ne
@~ve;z

@z
dV; (51)

@

@t

ð hni2

2
dV ¼

ð
h~ne~vri

@hni
@r

dV; (52)

@

@t

ð r?/ð Þ2

2
dV ¼ $

ð
/
@ ~vz $ ~ve;zð Þ

@z
dV; (53)

where the flow drive by ion pressure drop is neglected since
it is weak. By adding them up, we can obtain the energy con-
servation in the weakly non-adiabatic limit (i.e., ~ne " /)
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@

@t

ð
~n2

e þ r?/ð Þ2 þ ~v2
z þ hvzi2 þ hni2

2
¼ 0; (54)

where ~pe ffi Te ~ne has been used. By keeping track of the cou-
plings between fluctuations and mean profiles in the above
system, we can see that energy is coupled in the following
progression: hni ! ~ne ! r?/, which is ~vE!B ! ~vz ! hvzi.
Specifically, energy is coupled from ~vz to hvzi via the axial
Reynolds power PRes

z ) h~vr~vzi@rhvzi. Thus, it is clear that
Reynolds work coupling conserves energy.

In linear device, the axial flow is driven by ion pressure
drop in the axial direction and is damped by the total viscos-
ity vtot

/ ¼ vDW
/ þ vPSFI

/ Hðhvzi0 $ hvzi0critÞ $ jvRes
/ j. The flow

profile gradient stays below the PSFI threshold due to the
nonlinear saturation by vPSFI

/ . The net axial flow has a source
driven by the axial ion pressure drop in the central region
and a sink set by the momentum out flux at the wall.
Boundary conditions for the plasma flows are determined by
neutral flow dynamics within the boundary layer via ion-
neutral coupling. In this paper, flow profiles (a) with no drive
by ion pressure drop or momentum flux at the wall, (b) with
ion pressure drop and no-slip wall boundary condition, and
(c) with both ion pressure drop and momentum loss at the
boundary are calculated and discussed, respectively. Flow
profiles strongly depend on the boundary condition. Future
work on the neutral dynamics within the boundary layer will
provide a physical boundary condition for the plasma flow,
and will thus lead to a better understanding on the global mo-
mentum budget and axial flow structure in linear devices.

For tokamaks, a synergy of conventional models for re-
sidual stress and the negative viscosity by dynamical sym-
metry breaking is proposed. The dynamical symmetry
breaking does not require complex magnetic field structure,
so it is also applicable to intrinsic rotations in tokamaks. The
negative viscosity reduces the total flow damping and thus
enhances the intrinsic rotation profile gradient. In particular,
the dynamical symmetry breaking works in flat q regimes, so
it is significant for controlling transport through the q profile.
Also, using only a simple model of electron drift waves, this
new model for residual stress can be applied to intrinsic rota-
tion in burning plasmas with CTEM turbulence. Moreover,
the dynamical symmetry breaking mechanism is also rele-
vant to intrinsic rotation of electron cyclotron heated (ECH)
heated plasmas.28 This mechanism can enhance the effect of
flow drive induced by ECH. For example, the ECH injection
can induce a residual stress, PRes via conventional symmetry
breaking mechanisms, and the flow gradient is thus enhanced
by the negative viscosity increment resulting from dynamical
symmetry breaking, i.e., hvki0 " PRes=ðv/ $ jvRes

/ jÞ.
The dynamical symmetry breaking mechanism can be

relevant to other types of turbulence, such as turbulence
driven by ion temperature gradient (ITG). However, as only
drift wave turbulence has been considered so far, the details
of the ITG case are unknown at this stage. Its study is
planned for a future publication. We conjecture that a quali-
tatively similar feedback mechanism may still work in ITG
turbulence. This is because in ITG turbulence, the test flow
shear enters the growth rate even without a frequency shift,

and hvki0 enters via khkk asymmetry. Further, for a kinetic
theory of ITG instability, the basic non-adiabatic ion
response is df " fiLðx$ x-;iÞjeju=Tigf0, where L is a prop-
agator. Hence, the frequency shift effect can enter here, as
well. However, whether this will give a negative viscosity in-
crement is unknown at this moment in time. We plan to
address this question in a future publication, the preparation
of which is ongoing.

In a similar vein, the mechanism proposed in this paper
can be relevant to flow reversals during transition between lin-
ear Ohmic confinement (LOC) and saturated Ohmic confine-
ment (SOC).30 Intrinsic flow direction during the LOC-SOC
transition can be set by geometrical symmetry breakers, e.g.,
hvEi0 and I0ðxÞ. However, our mechanism enhances the flow
profile gradient, via hvki0"PRes =ðv/$ jvRes

/ jÞ. In LOC state,
hvki0 is enhanced by$jvRes

/ j as a result of dynamical symmetry
breaking. In SOC state, however, it is unclear about the effects
on hvki0 by other types of turbulence, and this will be left for a
future publication, as commented above.

The dynamical symmetry breaking is fundamentally differ-
ent from the usual eddy tilting. In the dynamical symmetry
breaking model, flow shear directly affects the linear growth
rate by selecting some modes which grow faster, resulting in a
spectral imbalance. Eddy tilting by hvhi0 in ðr; hÞ plane enters
the correlator h~vr~vhi " hkhkri " $hk2

hihvhi0sc, resulting in an
unambiguous Reynolds work, and does not enter directly via
stability. But in (r, z) plane, eddy tilting does not work, because
@tkz ¼ $@zðxþ kzhvziÞ ¼ 0. In our case, the hkhkri correlator
couples differently to the growth rate, for different hkhkri. Thus,
our mechanism is fundamentally different from eddy tilting.
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